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1 Introduction
Unlike our universe, the tidyverse didn’t start with a big bang, but rather emerged through a gradual
accumulation of packages that eventually coalesced into something greater than the sum of its parts. In
this paper, I’ll trace this evolution from my perspective, beginning with the early influences that sparked
the first proto-tidyverse packages and following their development into a cohesive ecosystem. I’ll explore
the defining features that make the tidyverse unique, highlight the contributions that I’m most proud of,
and examine how it grew from an individual project into a collaborative effort supported by both a team
at Posit and a vibrant community. Finally, I’ll reflect on where the tidyverse stands today and share my
vision for its future.

This article summarises almost 20 years of package development encompassing over 500 releases of 26
packages. That means this write-up is necessarily abbreviated and when coupled with my fallible memory,
that means I’ve almost certainly forgotten some important details. If you spot any important omissions,
please let me know so I can fix it!

2 Before the tidyverse
While the tidyverse was named in 2016, most of the packages that made it up were created earlier, as
summarised by Figure 1. In this section, I’ll explore how the tidyverse came to be, a journey that’s inextri-
cably tied to to the course of my career. I’ll begin the story with a couple of formative experiences growing
up, then continue to my PhD where I created reshape and ggplot. Next we’ll move onto my professional
career, first at Rice University where teaching forced my ideas to become more concrete and accessible,
and then to RStudio (now Posit) where I was given the freedom and resources to dive deep in package
development.
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Figure 1:  Initial releases of tidyverse packages and important precursors. The vertical line indicates the
release of the tidyverse package. Core tidyverse packages appear in bold in the y-axis labels.

2.1 Growing up
Growing up, I was very lucky to have access to computers from a very early age, thanks to my dad¹, and
this led to an general interest in computers and programming. My dad’s work involved databases, so I was

¹You can read more about him and how he shaped my life at https://tidydesign.substack.com/p/my-dad-brian-wickham.

lucky to have deep conversations about relational database design and Codd’s third normal form much
earlier in life than usual. That led to a lot of playing around in Microsoft Access, a desktop DBMS, and to
an eventual part-time job developing databases. This work was invaluable when I later came to wrestle
with the data needed to fit statistical models.

From my mum I learned that you don’t need to ask permission to do good in the world². This meant that
when I encountered data analysis problems that I thought I could solve, I felt empowered to not only solve

²She also taught me to bake, which I continue to get great enjoyment from, but I don’t think that has influenced the
development of the tidyverse, except for some fun purrr examples.

them, but share my solutions with the world. From both my parents I gained the conviction those with
many resources have a moral obligation to help those with less, which made it natural for those solutions
to enter the world as open source software.

The final formative experience prior to my PhD was my undergraduate statistics degree at the University
of Auckland, the birthplace of R. Unsurprisingly, many of my courses were taught using R, which meant
that I started using R in 2003, at version 1.6.2. It’s fun to look back at my earliest R code: the files use
a .txt extension, mix = and <- for assignment, and use very inconsistent spacing.
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2.2 PhD (2004-2008)
My undergraduate left me with a desire to learn more about statistics, and since my Dad had done his
PhD at Cornell University, it seemed quite reasonable to look to the US to do my PhD. This lead me to
Iowa State University (ISU) and my major advisers Dianne Cook and Heike Hofmann.

At ISU, I was lucky enough to get a consulting assistantship with the Agricultural Experiment Station,
where I helped PhD students in other departments do their analyses. This work lead me to face two chal-
lenges that remain with me today:

• The hardest part of collaborative data analysis is not finding the correct statistical model, but getting the
data into that a form that you can actually work with. This challenge led to the creation of the reshape
package which made it easier to work with a variety of input datasets by first converting to a “molten”
form which you could then “cast” into the desired form³.

• I often found it hard to translate the plots that I pictured in my head into code using either base or
lattice [1] graphics. At the same time I was reading the The Grammar of Graphics [2] and found its
theory of visualisation to be very compelling. But the only implementation available at the time was
very expensive, so I decided I’d have a go at creating my own in R. That led to ggplot and later ggplot2.
I was very lucky to meet Lee Wilkinson who was tremendously supportive on my work⁴.

³Compared to today’s equivalent, tidyr, reshape includes a lot of tools for working with high-dimensional arrays. I was
initially interested in arrays because they are rather elegant and can be much more memory efficient than data frames. But
they only work well for highly crossed experimental designs and I found them very hard to explain to others. My work with
arrays largely fell by the wayside once I decided that it was better to standardise on data frames.

⁴Lee also made a throwaway comment about reshaping that led to a vastly more performant implementation that become
the heart of reshape2.

This work wouldn’t have been possible without Di and Heike, who let me work on what I thought was
most important⁵, regardless of whether or not it fit the mold of a traditional statistics PhD. They also

⁵I was supposed to be working on ggobi, a tool for interactively exploring high-dimensional data. This led to a number of
R packages including clusterfly and classify that used the rggobi package to get your data from R and into ggobi. I still think
this work is incredibly useful and empowering but somehow interactive graphics has failed to have the impact on statistical
practice that it really should.

provided air-cover for me when I let my disdain for the utility of theoretical statistics shine a little too
clearly, making it harder than necessary to complete the more traditional components of my PhD. My
work at ISU culminated in my thesis “Practical tools for exploring data and models”, a write-up of the
collection of R packages I had begun to amass and the ideas that underpinned them.

2.3 Rice University (2008-2012)
After graduating from ISU, I got a job at Rice University. Here my most formative experience was teaching
Stat405, “Introduction to Data Analysis”⁶. I taught this class four times (2009-2012) and found the expe-

⁶If I taught this today, I’d call it an Introduction to Data Science.

rience of repeatedly teaching the same topics to new students to be extremely useful. It helped me to
discover topics that students found hard to understand and tools that they found hard to use, and I could
see the impact of my improvements to teaching and tooling from year-to-year. This led to the creation of
the stringr (2009) and lubridate (2010, with Garrett Grolemund) packages as I discovered that many stu-
dents struggled to master the special cases of string and date-time manipulation in base R. It also catalysed
my work on tidy data and group-wise manipulation that led to the tidyr and dplyr packages which I’ll
discuss in the next section.
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Throughout this time, the popularity of ggplot2 continued to rise, and I manage to carve out time to work
on it, despite it not being considered research and thus not valued by my department. But my interactions
with the community kept me motivated and continued to reinforce my belief that open source software
development was valuable because it empowered others to do better data analysis. During this time I
started work with Garrett Grolemund, as my PhD student, and Winston Chang, as a contractor. Most
importantly for the the tidyverse, Garrett developed lubridate [3] and Winston worked on ggplot2, im-
plementing new geoms like geom_dotplot() and geom_violin(), as well as important infrastructure like
the theme and the underlying objected orient programming systems. I’m lucky to still have Garret and
Winston as my colleagues at Posit.

During my time at Rice I had very little success with grants. I had a hard time packaging my work in a
way that the people reviewing statistics grants at the NSF could make sense of, despite my absolute con-
viction that this work was important. I was fortunate to get a couple of small grants from BD (a medical
technology company) and Google to my work on plyr, reshape, and ggplot2, but these were nowhere near
the amount of money I was expected to bring in. A paragraph from a final report to BD highlights my
thinking at the time:

The generous support of BD has allowed me to implement many performance improvements to plyr,
reshape and ggplot2, and begin work on the next generation of interactive graphics. Without such
support, it is difficult for me to spend time on these projects as they do not directly contribute to my
research portfolio. Your support not only gives me the financial backing to pursue these important
optimisations, but also sends a strong signal to the statistics community that this work is important.

I also worked tooling for package development, despite it similarly lacking any “research” merit. Because
I was developing quite a few packages, it made sense to invest in tooling that helped me develop more
reliable software in less time. This led to the creation of the testthat (2009) and devtools (2011) packages,
and taking over maintenance of the roxygen2 package⁷ (2011).

⁷roxygen2 was developed by Peter Danenberg and Manuel J. A. Eugster for a Google Summer of Code project in 2008.

2.4 RStudio (2012-)
In 2012, I left Rice for RStudio (now Posit), moving to a position where the practice of software engineer-
ing was valued and I no longer needed to produce papers or find grant money. This gave me the time
and freedom to learn C++, an important tool needed for writing high performance code and binding R to
existing C/C++ libraries. I was very lucky to be mentored by JJ Allaire which allowed my C++ skills to
grow rapidly. Overall, my first few years at RStudio led to an explosion of new packages because I had
both the time to work on what I thought was important and the ability to invest in programming skills
that were not valued in academia.

The most important new package was dplyr. dplyr grew from my dissatisfaction using the plyr package
to solve various grouped data frame problems. These problems tended to be simple to explain but hard to
solve using existing tools. For example, you have the babynames dataset and want to figure out the rank
of each name, within each combination of sex and year. Solving that problem required plyr::ddply(),
where the dd prefix indicates that both the input and output are data frames. ddply() has three arguments:
the input data frame to work, how to split it up (by year and sex variables) and what we want to do to
each piece (mutate it).
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library(babynames)

ranked <- plyr::ddply(babynames, c("year", "sex"), function(df) {
  plyr::mutate(df, rank = rank(-n))
})
head(ranked, 10)
#>    year sex      name    n       prop rank
#> 1  1880   F      Mary 7065 0.07238359    1
#> 2  1880   F      Anna 2604 0.02667896    2
#> 3  1880   F      Emma 2003 0.02052149    3
#> 4  1880   F Elizabeth 1939 0.01986579    4
#> 5  1880   F    Minnie 1746 0.01788843    5
#> 6  1880   F  Margaret 1578 0.01616720    6
#> 7  1880   F       Ida 1472 0.01508119    7
#> 8  1880   F     Alice 1414 0.01448696    8
#> 9  1880   F    Bertha 1320 0.01352390    9
#> 10 1880   F     Sarah 1288 0.01319605   10

This code is unappealing for new users because it requires that understand functions and the basics of
functional programming. This means that if you’re teaching R, you can’t teach it until later in the semes-
ter, even though the underlying task is straightforward and is something you want to be able to do early
in your data analysis journey.

The creation of dplyr allowed you to instead write code like this:

library(dplyr)

babynames |>
  group_by(year, sex) |>
  mutate(rank = rank(desc(n)))
#> # A tibble: 1,924,665 × 6
#> # Groups:   year, sex [276]
#>     year sex   name          n   prop  rank
#>    <dbl> <chr> <chr>     <int>  <dbl> <dbl>
#>  1  1880 F     Mary       7065 0.0724     1
#>  2  1880 F     Anna       2604 0.0267     2
#>  3  1880 F     Emma       2003 0.0205     3
#>  4  1880 F     Elizabeth  1939 0.0199     4
#>  5  1880 F     Minnie     1746 0.0179     5
#>  6  1880 F     Margaret   1578 0.0162     6
#>  7  1880 F     Ida        1472 0.0151     7
#>  8  1880 F     Alice      1414 0.0145     8
#>  9  1880 F     Bertha     1320 0.0135     9
#> 10  1880 F     Sarah      1288 0.0132    10
#> # ℹ 1,924,655 more rows

The design of dplyr was centred around verbs like filter(), mutate(), and summarise(), with names
that evoked their desired purpose. Each verb did one thing well, and was designed to compose with other
verbs in order to solve complex problems. While dplyr does require some big new ideas, I found that
students learned them much more easily than functional programming.
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The early years of dplyr benefited tremendously from the work of Romain François (initially as an RStudio
contractor and then later as an employee). Thanks to his C++ expertise, dplyr also ended up being much
faster than plyr, ensuring that there was an immediate payoff to learning it⁸. One of the particularly nice

⁸Unfortunately, I didn’t spend enough time getting to know data.table at this time. I failed to understand how immensely
fast it was and why its syntax was appealing to so many people, which damaged my relationship with its community. For-
tunately in the years since I have worked to repair those relationships, particularly thanks to help and advice from Tareef
Kawaf in 2019. I’m proud to say that dtplyr, the dplyr backend that uses data.table, received a data.table seal of approval.

features of dplyr is that you can use the same syntax with different backends. For example, you can use
dbplyr⁹ (2017) to work with SQL databases where, instead of running R code, the package generates SQL
code that is run in the database.

⁹dbplyr is one of my favourite R packages because of it requires both a deep understanding of R and SQL, and an pragmatic
approach to generating translations for many different databases.

During this time I also started thinking about how data gets into R, starting with databases. I took
over maintenance of the DBI and RSQLite packages from Seth Falcon (2013), created bigrquery (2015) to
work with Google’s BigQuery database, and forked RPostgres from the then-unmaintained RPostgresSQL
(2015). This work was done in concert with Kirill Müller, who now maintains much of the database ecosys-
tem thanks to funding from the R Consortium. After databases, I worked on a range of other data sources
including web scraping (rvest, 2014), Excel (readxl, 2015), rectangular text files (readr, 2015), SPSS/SAS/
Stata (haven, 2015), and XML (xml2, 2015). None of these packages would have been possible without my
newfound C++ skills, as they all relied on tight integration with existing C libraries.

Around this time I started to become particularly well known in the R community. This led to a couple of
popular virtual Q&A sessions on Reddit (2015) and Quora (2016), which are good places to look if you’re
interested in getting a snapshot of my thinking at the time.

3 The early days
While most of the packages of the tidyverse-to-be existed in 2015, the tidyverse had yet to be named and
defined. In the this section you’ll learn how the name came to be, the common principles that underlie
tidyverse packages, and how I helped people learn to use it.

3.1 Naming the tidyverse
As the collection of packages I had developed grew, the community needed some name to refer to them in
aggregate. Many people started calling these packages the “Hadleyverse”¹⁰, a name that I found tremen-

¹⁰e.g. https://github.com/imanuelcostigan/hadleyverse

dously unappealing. Thus I started brainstorming an “official” name that I liked, with candidates including
the sleekverse, the dapperverse, and the deftverse¹¹. In hindsight, the tidyverse seems obvious, and I won-
der why I had to spend so much time and effort coming up with a name.

¹¹In June 2016, Winston Chang and I brainstormed a bunch of ideas in slack: shipshape, trim, spruce, dapper, natty, joy-
sparking, spiffy, choice, debonair, suave, virile, civil, gallant, pulchritudinous, graceful, well-tempered, deft, fastidious, slick,
crack, mellow, mannerly, unctuous, tolerable, glib, fluent, affable, agreeable, stout, dashing, snazzy, boffo, raffish, rakish,
swashbuckling, nifty, phat, dandy, sleek.

Overall, I’m still very happy with the name, but there’s one feature that I don’t like: it implies that every-
thing outside the tidyverse is the messyverse. I don’t believe this is true: the tidyverse is just one way to
get the job done and I don’t think it’s wrong to use other tools (indeed, it’s usually not possible to do an
analysis using only the tidyverse).
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I announced the name at my keynote at useR on June 29, 2016. And then a few months later in September,
I released the tidyverse package. This package had two main goals:

• To make it easy to install all packages in the tidyverse with a single line of code,
install.packages("tidyverse"). This made it easy to get a “batteries included” data science environ-
ment and was especially useful when teaching.

• To make it easy to load the most common packages, so that you could type library(tidyverse) instead
of loading packages one by one. The initial release loaded ggplot2, dplyr, tidyr, readr, purrr, and tibble,
then version 1.2.0 (September 2017) added forcats and stringr, and version 2.0.0 (March 2023) added
lubridate¹².

¹²We had wanted to add lubridate along with forcats and stringr, but there were a couple of function names that caused
conflicts. The process of eliminating these functions without unduly affecting user code took a further five years.

Figure 2 summarises the current state of the tidyverse, broken down by our model of the data science
process.

Figure 2:  The packages of the tidyverse, organised using a partial version of my model of the data science
workflow. The missing step is communication, which is aided by tools outside the tidyverse, like Quarto
and Shiny. This image comes from a presentation called the “Joy of Data Science” which I gave in 2020.

3.2 Defining the tidyverse
Naming the tidyverse created some bigger questions: What exactly is the tidyverse? What are the unifying
principles that underlie the packages in the tidyverse? In my useR talk I cited three unifying principles:

• Uniform data structures.
• Uniform APIs.
• Support referential transparency.
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I think the first two principles are straightforward: it’s easier to learn a new tool if it uses data struc-
tures and interfaces that you’re already familiar with. But what does it mean to support referential trans-
parency? That’s a call to the principles of tidy evaluation, which we’ll come back to in Section 4.4.

I repeated my introduction to the tidyverse talk a few times that year and by December 2016 I’d further
refined the core principles to these four:

• Share data structures (i.e. tidy tibbles).
• Compose simple pieces (i.e. use the pipe).
• Embrace functional programming (instead of for loops).
• Write for humans.

The final bullet was particularly motivated by this quote:

Programs must be written for people to read, and only incidentally for machines to execute.
— Hal Abelson

I think that’s a particularly important principle for data science code, because it’s very important to be
able to read, understand, and the critique the code used to perform an analysis. Ideally, you’re not just
solving a problem with code, you’re also documenting how you solved it so that you (and others) can
understand the path that you’ve taken.

Since that time I’ve continued the definition of the tidyverse and you can see my latest iteration in Tidy
design principles. At the time of writing, the four principles of the tidyverse were:

• It is human centred, i.e. the tidyverse is designed specifically to support the activities of a human data
analyst.

• It is consistent, so that what you learn about one function or package can be applied to another, and
the number of special cases that you need to remember is as small as possible.

• It is composable, allowing you to solve complex problems by breaking them down into small pieces,
supporting a rapid cycle of exploratory iteration to find the best solution.

• It is inclusive, because the tidyverse is not just the collection of packages, but it is also the community
of people who use them.

3.3 Learning
Once I had identified the tidyverse, it become natural to ask “how do you learn it?” The answer to this
question became the book R for Data Science [4], [5]. I wrote a book because I believe that books are one
of the best ways to spread big ideas; the linear format allows you to lead the reader step-by-step and you
have plenty of space to go in to the details. Equally important to me was that the book should be available
to all, regardless of their ability to pay. That’s why all the books I write have a dual production model: a
free HTML version that I produce and a paid physical version produced by a commercial publisher.

R for Data Science proved to be extremely popular. It sold very well, but more importantly to me, a ton
of people used the website¹³. One of my favourite things about the book is how many languages it has

¹³According to my web statistics, around 1 million unique visitors and 2.9 million page views in the last year.

been translated into including Russian, Polish, Japanese, Chinese (traditional) and Chinese (simplified).
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I’m particularly fond of the community translations (Spanish, Italian, Turkish, and Portuguese) because
they were translated by volunteers and made freely available to the world.

4 Key innovations
So far I’ve traced the chronological development of the tidyverse, but I also want to examine some of
the specific innovations that emerged during this journey. These innovations weren’t just programming
achievements: they represent new ways of thinking about and interacting with data, and helped to build
a community around the tidyverse. I’ve selected five contributions—tidy data, tibbles, the pipe, tidy eval-
uation, and hex stickers—that I’m particularly proud of. Let’s examine each of these key developments
in turn.

4.1 Tidy data
I’ve always had a very strong sense that there’s a “right” way to organise your data, a way that would
make the rest of your analysis much easier. And when looking at a dataset I could usually identify what
form would be the most productive. But I had a time explaining what I was doing to others, and experi-
enced numerous failures when trying to teach my approach to students. Eventually I figured out the three
principles of tidy data¹⁴ and elucidated them in H. Wickham [6]:

¹⁴This is certainly not the only data stucture you might ever want to use, but it’s extremely useful to have a organising
structure that you can rely on for the majority of your work. It’s a great default, even if you might need other forms for
specialised purposes.

• Each variable goes in a column.
• Each observation goes in a row.
• Each value goes in a cell.

This definition seems to work for people from diverse academic backgrounds, even without a precise de-
finition of variable and observation. Given their simplicity, it seems hard to understand why it took me
so long to figure them out. It’s also a strange gap in the statistics literature: this is one of the very few
papers that actually describe how you should structure your data in order to do statistics.

The definition of tidy data was tightly paired with tidyr¹⁵, a package that helps tidy your data. This package
initially provided the gather() and spread() functions, but many people (including me!) had a hard time

¹⁵Fun fact: I only realised that tidyr was an anagram of dirty when someone pointed it out on twitter several years later.

remembering which was which and how their arguments worked. Additionally, their design wasn’t quite
flexible enough to handle all the problems which we later discovered in practice. In tidyr 1.0.0 (2019), we
resolved many of these problems by introducing the new pivot_longer() and pivot_wider() functions.
These new names were informed by (casual) user research, where I asked my twitter followers to describe
two data transformation operations. You can learn more about this research at https://github.com/hadley/
table-shapes.

tidyr 1.0.0 also expanded the scope of the package to encompass “rectangling”, a new term for converting
hierarchical data into tidy rectangles. At the time, this was becoming increasingly important as more data
was coming from JSON web APIs, which tended to produce deeply nested data structures. You can learn
more about the problem and the solutions that tidyr provides in tidyr’s rectangling vignette.
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4.2 tibbles
Tidy data provides a theoretical framework to productively organise your data. But you also need a prac-
tical data structure where this data can live. Base R provides the data frame, but I found that it suffered
from a number of small issues that added needless friction. To resolve these issues, I created the tibble, an
extension of the data frame with a number of small changes:

• Data frames can flood your console with output when working with datasets containing many rows
or many columns. In older versions of R, you couldn’t even cancel this display, making it easy to lock
yourself out of your console when working with bigger datasets. tibbles print only a small number of
rows and just the columns that fit on one screen. You can always explicitly request more data, but the
defaults keep your analysis workflow nimble.

• When teaching, I found that students didn’t have a good sense for column types, and even I sometimes
found myself confused about whether a column was a date, a string, or factor. To avoid this problem,
tibbles show (abbreviated) variable types underneath the column names.

• In the unfortunate case of data.frame(x = c(NA, "<NA>")), there’s no way to distinguish the two
values from the printed output. Tibbles use a side-channel, colour, to ensure that there’s no way to
confuse a missing value and a string with the same printed representation.

• Base data frames technically support nested data structures, like columns that are themselves data
frames or columns that are lists of data frames. But they are printed poorly, making them hard to use.
Tibbles strive to represent these more complex data types in a readable way, making them more usable
where needed.

tibbles also resolve a couple of subsetting gotchas that make it easy to make silent errors when writing
package code. For example, if df is a data.frame, then:

• df[, cols] can return either a vector or a data frame, depending on the contents of col.

• df$x uses partial matching, so that if column xdoesn’t exist but column xyz does, it will silently return
df$xyz.

If df is a tibble then neither of these problems occur because df[] always returns another tibble and df$x
never performs partial matching. This is why I have jokingly described tibbles as lazy and surly versions
of data frames.

tibbles started life in dplyr, originally called tbl_dfs with no suggestion as how to pronounce their name.
Kevin Ushey proposed pronouncing them as tibble-diffs in 2014, and the tibble bit stuck. As the utility
and complexity of tibbles expanded, they needed more space to grow and were extracted into their own
package in 2016.

tibbles were a much more contentious data structure than I had anticipated. They broke code in older
packages and my strong opinions about the formatting of significant digits caused some community con-
sternation. The contention seems to have mostly died down, but today I am much more cautious about
introducing new data structures. New data structures are fundamentally much more costly than new
functions or packages, and they need to be kept to the bare minimum.

4.3 The pipe
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No matter how complex and polished the individual operations are, it is often the quality of the glue
that most directly determines the power of the system.

— Hal Abelson

The pipe quickly became one of the defining features of tidyverse code. It allows you to rewrite function
composition (e.g. f(g(x)))) as a linear sequence of transformations (e.g. x |> f() |> g()), which tends
to make common data analysis programming patterns much easier to read.

I first implemented the pipe in dplyr in Oct 2013 and called it %.%. When I announced dplyr in January
2014, I learned that Stefan Milton Bache had been thinking along similar lines and had created the magrittr
package. It used %>% instead of %.%, which is easier to type (since you can hold down the shift button the
whole time¹⁶), and had more comprehensive features. So I quickly pivoted to use magrittr and deprecated

¹⁶The requirement for infix function names to start and end with % comes from R, and there’s no avoiding it without
patching R itself.

%.%. I was initially cautious about this new syntax, but users picked up on it quickly, and I found it easy
to teach. You can learn more about the early history of the pipe in Adolfo Álvarez’s excellent blog post
“Plumbers, chains, and famous painters: The (updated) history of the pipe operator in R”.

Today, the pipe is available in base R thanks to a collaborative effort. In 2016, Lionel Henry proposed
new syntax and wrote a patch for R, which Jim Hester presented to the R Core Team at the Directions
in Statistical Computing Conference in 2017. This presentation was received positively, but it took some
time for R Core to fully align on the utility of the pipe. Three years later, Luke Tierney added the base pipe
to R 4.1 (2020), following up with placeholder syntax in R 4.2, and support for $, [ and [[ in R 4.3. Because
R can modify the parser, the base pipe has better syntax, |>, including a more visible placeholder, _. With
the maturity of the base pipe, the tidyverse is gradually moving away from %>% towards |>, a process that
will take several years to complete.

As an interesting historical anecdote, there would have been no need for ggplot2 had I discovered the
pipe earlier, as ggplot was based on function composition. I correctly identified that function composition
was an unappealing user interface, but if I had discovered the pipe at that time, ggplot could have used it,
rather than needing to switch to + in ggplot2. You can try out ggplot if you want, or learn why ggplot2
can’t switch to the pipe.

4.4 Tidy evaluation
One of the most challenging features of the tidyverse is tidy evaluation. It’s hard to briefly define tidy
evaluation, but fortunately it’s straightforward to motivate with an example. Imagine you’ve written the
following repeated code, and following the “rule of three”, you want to extract out the repetition into a
function:

df1 |>
  group_by(g1) |>
  summarise(mean = mean(a))
df2 |>
  group_by(g2) |>
  summarise(mean = mean(b))
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df3 |>
  group_by(g3) |>
  summarise(mean = mean(c))

You might try the usual approach to writing a function and come up with the following code:

grouped_mean <- function(df, group_var, summary_var) {
  df |>
    group_by(group_var) |>
    summarise(mean = mean(summary_var))
}

df1 |> grouped_mean(g1, a)
#> Error in `group_by()`:
#> ! Must group by variables found in `.data`.
#> ✖ Column `group_var` is not found.

This code doesn’t work because dplyr looks for a variable literally named group_var, not the variable, a,
that you want. I think we now know how to succinctly define the problem: we use the word variable to
mean two different things. A data-variable is a statistical variable, something that exists inside a data
frame, like g1, or a. An environment-variable is a computer science variable, something that exists in
(e.g.) the global environment, like df1 or df2. The fundamental challenge of tidy evaluation is handling
the case where you have a data-variable (e.g. g1) stored inside of a environment-variable (e.g. group_var).

It took us around five years to provide the tools to fully solve the problem. My efforts started in dplyr
0.3.0 (2014) with the introduction of the lazyeval package. There were three pieces:

• lazyeval::lazy() allowed you to capture the data-variable stored inside an environment-variable,
producing an explicit lazy object.

• lazyeval::interp() allowed you to interpolate a lazy object into a bigger expression creating a new
lazy object.

• Every dplyr function had a variant that ended in an underscore that took lazy objects.

That led to a solution that looks like this:

grouped_mean <- function(df, group_var, summary_var) {
  group_var <- lazyeval::lazy(group_var)
  summary_var <- lazyeval::lazy(summary_var)

  df |>
    group_by_(group_var) |>
    summarise_(mean = lazyeval::interp(~ mean(summary_var), summary_var))
}

This approach worked, but was a bit clunky. Additionally, in July 2016, I learned that the technique that
allowed lazy() to work would be no longer supported in a future version of R, which lead me back to
the drawing board. Fortunately Lionel Henry had recently joined my team and had a bunch of ideas of
how to improve the situation. That lead us to a new framework called tidy evaluation (tidyeval for short)
which we introduced to dplyr 0.6.0 (2017).
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Tidy evaluation is provided by the rlang package, and introduces two new tools:

• enquo() lets you to “quote” an environment-variable creating an explicit quosure object.

• !! (pronounced bang-bang), allowed you to “unquote” or interpolate a quosure into a bigger expression.

This approach was appealing because every dplyr function could itself call enquo(), meaning that we no
longer needed to have two versions of every function. This led to the following solution:

grouped_mean <- function(df, group_var, summary_var) {
  df |>
    group_by(!!enquo(group_var)) |>
    summarise(mean = mean(!!enquo(summary_var)))
}

Tidy evaluation included a solid theoretical foundation, making us more confident that our implementa-
tion was correct and complete. I still believe that theory is really important but experience taught us that
few R users wanted to learn it. During 2017 and 2018 I gave 12 talks on tidyeval around the world, trying
to convince others that they could use tidyeval for their own code. But this was much less effective than
I had hoped and there were general rumblings in the community that tidyeval was too hard¹⁷.

¹⁷Memorable examples of this included posts on the RStudio community forum titled “Should tidyeval be abandoned?”
and “Will tidyeval kill the tidyverse?”.

This again sent us back to the drawing board and we came up with a new approach called embracing in mid
2019. This style introduced just one new operator { }, which you use whenever you have an data-variable
referenced by an environment-variable. While enquo() and !! continue to be used behind the scenes,
there’s now only one bit of new syntax to learn. This leads to a simple implementation of grouped_mean():

grouped_mean <- function(df, group_var, summary_var) {
  df |>
    group_by({{ group_var }}) |>
    summarise(mean = mean({{ summary_var }}))
}

We had also missed a few of common problems that were surprisingly hard to solve with existing tools,
which required a few smaller enhancements and some better documentation. Now we have a cookbook
that doesn’t require any theoretical knowledge and the grumblings about tidyeval seem to have subsided.

4.5 Hex logos
You can’t talk about the history of the tidyverse without also talking about hex logos. While the early
history of hex logos is now murky, from what I can tell, it appears that Stefan Milton Bache and I co-
discovered hex stickers around the same time in 2014¹⁸ through https://hexb.in. I personally found it very

¹⁸Stefan and I were clearly thinking many of the same thoughts in 2014!

appealing to have a shape that can tile the back of a laptop, along with a spec that ensures everyone’s
stickers are the same size and the same orientation (point down!).

I’m pretty sure the first hex logo was magrittr’s¹⁹, designed by Stefan in December 2014. Soon afterwards
I fully I embraced the idea of hex stickers and started creating them for key packages with the help of

¹⁹https://github.com/max-mapper/hexbin/commits/gh-pages/hexagons/magrittr.png
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designer Greg Swinehart; you can see two early versions of the ggplot2 logo in Figure 3. By mid-2016 we
were ordering them en masse for RStudio events, and we were beginning to see logos for other packages
in the community.

Figure 3:  Two early versions of the ggplot2 hex logo. I can’t find any record of who created the first ver-
sion (left), but I presume it was me given the incorrect orientation of the hex. The second version (right)

was created in concert with Garrett Grolemund.

Today, a huge number of packages have a logo, and I love seeing the creativity and diversity package
authors bring to their design! I love hex stickers as a community building tool: people can see your laptop,
immediately recognise you as a member of the R community, and get a sense of what you use R for. I’ve
heard many stories of people striking up a conversation with strangers just because they recognised the
stickers. They also play a role akin to trading cards and Figure 4 shows a collection of stickers that I’ve
been given over the years.
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Figure 4:  A board of hex stickers on display in my office.

5 The tidyverse at Posit
The naming of the tidyverse coincided with the start of my team at RStudio (now Posit), and the overar-
ching journey from a project that was primarily developed by me to one with many full-time contributors.
This wouldn’t have been possible without Posit, which has funded this work as part of its public benefit
corporation mission. I feel tremendously lucky to work at an organisation who’s mission so closely aligns
with my own.

The tidyverse team currently includes Lionel Henry, Jenny Bryan, Gábor Csárdi, Mine Çetinkaya-Rundel,
Thomas Lin Pedersen, Davis Vaughan, George Stagg, and Teun Van den Brand, as well as the tidymodels
team, described below. Jim Hester, Mara Averick, Romain Francois, Tracy Teal, and Andy Teucher have
moved on from their full-time roles at Posit but many of remain active in the community and they’re all
still valued members of the broader “team tidyverse”.

The mission of the team is broad and extends well beyond the tidyverse: we want to make R the best en-
vironment for doing data science. We have nothing against other programming languages (and certainly
use them where appropriate), but we love R, believe in it, and believe that you have to stay focused if you
want to have an impact.
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To achieve this mission the most obvious skills we deploy are our programming skills: we write a lot of R
code (as well as a smattering of C, C++, Rust, and Javascript) to create packages. Our mission extends be-
yond just tidyverse packages because we recognise that few analyses can be completed with the tidyverse
alone, and most will require additional special purpose tools. For this reason, we strive to help every R
package developer make higher quality packages. You can see this work in books like Advanced R and R
Packages and in the devtools family of packages that support tasks related to package development. This
family of packages has had a big impact on the practice of package development: at the time of writing,
~9,000 packages use testthat for unit testing, ~12,000 packages use pkgdown to make package websites,
and ~16,000 packages use roxygen2 to generate documentation.

But it doesn’t matter how useful your code is if no one knows about it. So we believe that marketing
and education are as important as programming, and all team members are expected to contribute to our
outreach by writing blog posts, writing books, giving talks, teaching workshops, and generally helping
to build and support the R community. We’re also a generally process-oriented team and we do our best
to write up our processes so that others can benefit from them. This work includes:

• Our package release checklist (created by usethis::use_release_isse()) ensures that we maximise
the chances of successful CRAN submission by following a standard process. Our process grows as we
discover new problems, and shrinks as we figure out how to automate manual steps away.

• We strive to keep our code formatting as consistent as possible so we wrote up our choices in the
tidyverse style guide. This is probably the most commonly used style guide in the R community.

• We spend a lot of time reviewing code (both internally and externally) so we wrote up code review
guidelines to keep our own work consistent, and to help new contributors know what to expect. This
work was lead by Davis Vaughan.

• We are slowly working on an exposition of the design principles that guide the design of tidyverse APIs.
This is helpful for us, because it makes it easier to remember design decisions and re-apply them the
same way in multiple places, and also helps the community see reusable patterns that they can apply
to their own code.

Our broad mission means that recently we have been spending less time on tidyverse packages and more
time on broader data science efforts; I’ll come back to our current areas of focus at the end of this paper.

5.1 tidymodels
Within the tidyverse team, the tidymodels team has a narrower mission: improving the tools data scien-
tists need to do statistical modelling and machine learning. The tidymodels team started in late 2016 when
Max Kuhn joined RStudio, after initial talks about how we could support statistical and ML modelling. As
well as Max, the tidymodels team currently consists of Hannah Frick, Simon Couch, and Emil Hvitfeldt.

Max was the obvious choice to found this team because of his work on the caret package. caret provided
functionality for basic predictive modelling tasks such as performance measures and resampling as well
as a consistent user interface across many modelling packages. Based on this work, Max wanted to create
a more extensible framework that would integrate more advanced tools, such as more complex pre- and
post-processing, and censored regression models. The resulting collection of packages was called tidy-
models and heavily relied on the tidyverse syntax and the underlying tools described above.
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A defining feature of tidymodels is its lighthearted approach to naming and the fun it has with package
logos. For example, for a package similar in spirit to caret, Max’s initial idea was to give it the code name
“carrot” to confuse outside users. I proposed “parsnip”, and the name stuck.

6 Tidyverse community
The tidyverse transcends its technical foundations to represent something far greater: a vibrant, global
community of practitioners, educators, and users who have embraced these tools to solve real-world prob-
lems. While the core team at Posit provides stewardship and a core of software development expertise,
the true strength of the tidyverse flows from its diverse community of users and contributors.

What makes the tidyverse community special is not just its size or reach, but its culture of mutual support
and shared learning. Whether someone is taking their first steps with R or pushing the boundaries of
what’s possible with these tools, they’ll find a community ready to help them succeed. This collaborative
spirit has created a virtuous cycle where learning flows in all directions: new users bring fresh perspec-
tives and questions that challenge assumptions, while experienced practitioners share deep insights that
push the ecosystem forward.

For us working on the tidyverse, the community serves as both motivation and guide. Your successes
energise us, your challenges direct our efforts, and your creativity constantly expands our vision of what’s
possible. This section explores the various dimensions of this community – from its evolution across dif-
ferent social platforms to the crucial role of community contributors in shaping and improving the tidy-
verse itself.

6.1 Social media and community spaces
The early R community centred around traditional mailing lists, particularly r-help and r-devel. While
these lists were invaluable for early R users, they reflected the academic statistical computing culture of
the time – technically rigorous, but often unwelcoming to newcomers²⁰. This environment prompted the

²⁰I still remember a conversation where I was told to look up a word in the dictionary.

creation of alternative spaces, including the ggplot2 mailing list in 2008, which explicitly aimed to provide
a more supportive environment for users learning data visualisation.

But the real transformation began with the community’s migration to more modern platforms. Stack
Overflow emerged as a crucial resource for asking and answering coding questions, and, despite some
toxicity amongst the self-appointed moderators, was generally a welcoming environment. Twitter was
particularly transformative in 2010-2022. The #rstats hashtag created a space where users could share
quick tips, celebrate successes, and build personal connections. The R community on Twitter became
known for its supportive and welcoming atmosphere, standing in marked contrast to the less friendly
environs found in other technical communities. I believe a big part of this is due the diversity of R users,
which has been tremendously boosted thanks to groups like R-Ladies, Minorities in R, and rainbowR.

Today, the R community has mostly shifted to new platforms like Mastodon, LinkedIn, and Bluesky. I find
Bluesky particularly rewarding; while the platform is still evolving, it has already become a vibrant hub
for maintaining the connections that make the R community special.
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6.2 Community contributors
The tidyverse wouldn’t be a fraction as good as it is today without community contributions. To foster this
collaborative spirit, we actively encourage and celebrate contributions of all sizes, from minor bug fixes
to major feature enhancements. A key tool in supporting our community of developers are the Tidyverse
Developer Days, which we launched in 2019. These hands-on events provide a welcoming environment
where participants learn the ins and outs of contributing to the tidyverse while tackling real issues with
a ton of hands on support. While the COVID-19 pandemic paused these gatherings after 2020, we’ve re-
instated them in 2024 and plan to make them an annual event following each posit::conf.

Most external contributors tend to provide a few small (but meaningful!) contributions. A limited number
of external contributors end up contributing much time and effort over the course of many years. We
recognise these contributors by making them package authors. This formally includes them in package
metadata (so they are explicitly acknowledged on CRAN, on the package website, and in the package
citation) and gives them write access to the GitHub repository. You can learn more about the rights and
responsibilities of authors (and other roles) in our tidyverse governance model.

Many package authors are academics, and since the currency of academics is citations, in 2019 we made
the effort to write H. Wickham et al. [7]. This makes it easy to cite the tidyverse as a whole²¹ and gives

²¹We include some advice on citing packages in our blog post advertising the paper: https://www.tidyverse.org/blog/2019/
11/tidyverse-1-3-0/.

academic credit to tidyverse maintainers who might benefit from it. In alphabetical better, the authors are:
Mara Averick, Jennifer Bryan, Winston Chang, Lucy McGowan, Romain François, Garrett Grolemund,
Alex Hayes, Lionel Henry, Jim Hester, Max Kuhn, Thomas Pedersen, Evan Miller, Stephan Bache, Kirill
Müller, Jeroen Ooms, David Robinson, Dana Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan,
Claus Wilke, Kara Woo, and Hiroaki Yutani. This paper has been cited over 16,000 times at time of writing.

Since we’ve published that paper we’ve gained a few new maintainers such as Maximilian Girlich (tidyr,
dbplyr), Mark Fairbanks (dtplyr), Ryan Dickerson (dtplyr), Olivier Roy (pkgdown), Danny Smith (haven),
Maxim Shemanarev (ragg), and Teun van den Brand (ggplot2).

7 Maintaining the tidyverse
For the last few years, the tidyverse has felt pretty mature to me. It’s certainly not perfect, but it feels
like we have all of the main pieces in place, and much of the remaining work is grinding down the minor
inconsistencies between them. Overall, the goal of the tidyverse is now consolidation and maintenance,
not growth.

To support this goal, we worked on three major projects:

• In 2019, we created a policy for R version support (the current version, the development version, and
the previous four versions). Coupled with R’s yearly release cycle, this means we support 5 years of R
versions. This policy is important because many large enterprises use older versions of R, but still want
to be able to use the latest and greatest package versions.

• In 2020 and early 2021, we defined a lifecycle policy. The early days of the tidyverse were characterised
by rapid evolution and backward incompatible change. This allowed us to rapidly evolve towards bet-
ter user interfaces, but we the community found that the pace of change was too high. The lifecycle
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policy helps us clearly communicate the state of different functions and provides a clear commitment
to backward compatibility.

• In late 2021, we re-licensed most tidyverse packages to the MIT license. This increased consistency
across packages, making it easier for legally conservative organisations to convince themselves there
was little risk to using the tidyverse.

There is one more maintainability change that I hope to make in the future: editions. The idea of an
edition is that you can run code like tidyverse::edition(2025) to opt-in to our best practices as of
(e.g.) 2025. Editions allows us to steer you towards the APIs that we think are best and make it possible
to change sub-optimal behaviour without breaking existing code. For example, we could use editions to
change the default colour schemes in ggplot2. We know that these could be improved, but we can’t change
the defaults without breaking a lot of existing plots.

8 What’s next?
As the tidyverse becomes more mature, the places where the tidyverse team spends our innovation energy
have started to change. Our mission is broad and we’re willing to go wherever this takes us, even if it’s
into new areas that we know little about. Currently there are three new areas that we are exploring as
a team:

• Positron. Positron is a new IDE for data science, produced by the same team that created RStudio. The
tidyverse team has been deeply involved in Positron’s tooling for R. This is exciting because it gives
us new skills, allowing us to create coding interfaces where that makes the most sense, and to create
graphical user interface where that is a better fit.

• R in production. If you’re working in industry, most analyses aren’t completed by writing a one-off
report. Instead, you will typically produce a living artefact that’s run repeatedly over months or years.
This is the challenge of putting your code in production, which currently feels harder than it should be,
due to a large number of paper cuts. These include tasks like getting database authentication working
when your code is deployed on a server that distracts from your data science tasks. In conjunction with
other teams at Posit, I’m convinced we can make many of these problems go away.

• LLMs for data science. By now, it’s clear that LLMs are going to have a transformative impact on
how we do data science. We see them as invaluable assistants for the data scientist, not replacements,
tools that allow you to get help where you need it and automate fiddly annoying tasks. Our work in
this domain is still very early, but one initiative is the ellmer package which lets you use LLMs from a
variety of providers within R.

It’s been a lot of fun to look back at the last ~20 years of the tidyverse. What started as a collection of
personal solutions to data analysis challenges has grown into something far greater than I could have
imagined – a vibrant ecosystem that helps millions of people around the world work more effectively
with their data. Our amazing community continues to inspire me daily with their creativity, generosity,
and enthusiasm.

Looking ahead, I’m more excited than ever about the future of R and the tidyverse. The emergence of new
technologies like LLMs offers fresh opportunities to make data science more accessible and more usable.
While the core tidyverse packages may be reaching maturity, there are still countless opportunities to
reduce friction, improve consistency, and help people solve real-world problems more effectively.
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I still love R, love programming, and most importantly, love working with this incredible community.
Here’s to the next 20 years of making data science more approachable, more powerful, and more fun!
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