Quick reference guide
Data filtering and selection
# Filter rows (remove what you don't want)
df |> yeet(age > 18, score > 70)
# Select columns (vibe check which ones matter)
df |> vibe_check(name, age, score)
df |> vibe_check(starts_with("test"))
df |> vibe_check(-id) # everything except idData inspection
# Get unique values (periodt, no duplicates)
df |> periodt(category)
# Count occurrences (it's giving frequency table)
df |> its_giving(category)
df |> its_giving(category, status)
# Take first n rows (send it)
df |> send_it(10) # top 10 rows
# Extract a column (main character energy)
ages <- df |> main_character(age)Common patterns that go hard
Pattern 3: Data cleaning
data |>
periodt() |> # remove duplicates
yeet(!is.na(important_col)) |> # remove missing
vibe_check(needed_cols) |> # keep only what matters
lowkey(better_name = old_name) # renameCombining with regular dplyr
Mix and match! It’s all compatible:
mtcars |>
yeet(mpg > 20) |>
mutate(kpg = mpg * 1.6) |> # regular dplyr
vibe_check(mpg, kpg, hp) |>
filter(hp > 100) |> # regular dplyr
slay(desc(kpg))Pro tips
-
Pipe game strong: Use
|>or%>%to chain operations - Vibe check early: Select columns you need first to speed things up
- Squad up strategically: Group before summarizing
- Don’t forget to disband: Ungroup when you’re done with grouped operations
-
Main character usage: Use
main_character()when you need a vector, not a data frame
Debugging tips
If something’s not working: - Check your parentheses and commas -
Make sure you’re piping (|>) between functions - Verify
column names (they’re case-sensitive) - Use glimpse() or
head() between steps to check your data
Most common combos
# The "I need quick stats" combo
df |>
squad_up(group) |>
no_cap(avg = mean(value), count = n())
# The "show me the best" combo
df |>
yeet(condition) |>
slay(desc(score)) |>
send_it(5)
# The "clean this mess" combo
df |>
periodt() |>
yeet(!is.na(key_column)) |>
vibe_check(needed_columns)
# The "make it pretty" combo
df |>
lowkey(nice_name = ugly_name) |>
glow_up(formatted = format(value, digits = 2)) |>
slay(nice_name)Remember: This is just dplyr with a personality. Everything that works in dplyr works here too!
Keep slaying your data analysis fr fr 🔥
